New downstream synthetic route of 22766-68-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Ethyl quinuclidine-4-carboxylate,22766-68-3,its application will become more common.

A common heterocyclic compound, 22766-68-3,Ethyl quinuclidine-4-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 22766-68-3

A solution of phenyllithium (1 .9 M in 70 cyclohexane/30 ether, 22.30 mL, 42.40 mmol) was cooled down to -30C under nitrogen. A solution of ethyl 1 -azabicyclo[2.2.2]octane-4-carboxylate (III, 2.0 g, 10.90 mmol) in THF (27.0 mL) was slowly added to the reaction mixture at -30C over 25 mins. The reaction mixture was allowed to warm up to room temperature over 16h. The reaction was quenched with water (10.0 mL) and then evaporated to dryness under vacuum. Water (40.0 mL) and ethyl acetate (40.0 mL) were added, causing a white solid to crash out. This solid was filtered off under vacuum, to give a white powder (2.46 g, 76.8%). 1 -azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol (IV): ^H-NMR (300 MHz, CDC ) delta 7.54 – 7.51 (m, 3H), 7.33 – 7.20 (m, 6H), 2.85 – 2.80 (m, 6H), 1 .78 – 1.72 (m, 6H). MS (ESI) m/z calcd for C20H23NO: 293, found 294 [M + H]+.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Ethyl quinuclidine-4-carboxylate,22766-68-3,its application will become more common.

Reference£º
Patent; HOVIONE SCIENTIA LIMITED; TURNER, Craig; LOURENCO, Nuno Torres; SOBRAL, Luis; ANTUNES, Rafael; SANTOS, Maria; ESPADINHA, Margarida; (35 pag.)WO2018/87561; (2018); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Some scientific research about Ethyl quinuclidine-4-carboxylate

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

22766-68-3 A common heterocyclic compound, 22766-68-3,Ethyl quinuclidine-4-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

1-azabicyclo[2.2.2]oct-4-yl(di-2-naphthalenyl)methanol A solution of (2-naphthalenyl)magnesiumbromide (0.5 M in THF, 6.5 mL, 3.25 mmol) was chilled down to 0 C. under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.1597 g, 0.871 mmol) in THF (4 mL) was slowly added to the reaction mixture at 0 C. over 20 min. The reaction was allowed to warm up to room temperature and then heated at 60 C. for 16 h. The reaction was chilled in an ice bath, quenched with saturated NH4Cl, and concentrated under vacuum. The resulting residue was treated with H2O and extracted with EtOAc. The combined organic layers were dried with MgSO4, filtered, and concentrated under vacuum to yield the desired product (0.265 g, 77.3%). EI-MS m/z 394(M+H+) Rt (1.90 min).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Some scientific research about Ethyl quinuclidine-4-carboxylate

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

22766-68-3 A common heterocyclic compound, 22766-68-3,Ethyl quinuclidine-4-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

1-azabicyclo[2.2.2]oct-4-yl[bis(4-methylphenyl)]methanol A solution of 4-methylphenylmagnesiumbromide (1.0 M in THF, 3.3 mL, 3.3 mmol) was chilled down to 0 C. under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.1509 g, 0.823 mmol) in THF (4 mL) was slowly added to the reaction mixture at 0 C. over 20 min. The reaction was allowed to warm up to room temperature and then heated at 60 C. for 16 h. The reaction was chilled in an ice bath, quenched with saturated NH4Cl, and concentrated under vacuum. The resulting residue was treated with H2O and extracted with EtOAc. The combined organic layers were dried with MgSO4, filtered, and concentrated under vacuum to yield the desired product (0.2291 g, 86.6%). EI-MS m/z 322(M+H+) Rt (1.57 min).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

The origin of a common compound about 40117-63-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,its application will become more common.

A common heterocyclic compound, 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 40117-63-3

Step 5: (S)-4-((1-(5-(2-methoxyquinolin-1-ium-3-yl)-JH-imidazol-2-yl)- 7-(methylamino)- 7-oxoheptyl)carbamoyl)quinuclidin-1-ium mono L-tartrate salt (A5) A solution of 4-carboxyquinuclidin-1-ium chlorhydrate (1.3 eq.) in DMF (0.2 M) was treated with TBTU (1.3 eq.) and NMM (2.6 eq.). The reaction mixture was stirred at room temperature for 10 minutes and then added to a solution of A4 in DMF (0.2 M). The reaction was stirred at RT for 2 h and subsequently was purified by RP-HPLC (Acetonitrile/H20 + 0.1 % TFA). Theproduct was obtained as TFA salt which was partitioned between DCM and sat. aq. NaHCO3. The organic phase was separated, dried over Na2504 and concentrated under reduced pressure. The resulting syrup was dissolved in acetonitrile/H20 (2:3) and treated with L-tartaric acid (1 eq.). The resulting solution was lyophilized to obtain the title compound. 1H-NMR (400 MHz, 300 K, DMSO-d6) oe 8.73 (br s, 1H), 7.94 (t, 2H, J 9.6 Hz), 7.76 (d, 1H, J 8.0 Hz), 7.67 (br s,1H), 7.60 (m, 2H), 7.42 (t, 1H, J8.0 Hz), 5.02 (m, 1H), 4.13 (s, 3H), 3.93 (s, 2H), 3.18 (t, 6H, J7.2 Hz), 2.54 (d, 3H, J4.4 Hz), 2.05-1.91 (m, 8H), 1.51-1.23 (m, 8H). MS (ESj C29H38N603:519 (M+H).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,its application will become more common.

Reference£º
Patent; IRBM SCIENCE PARK S.P.A.; C.N.C.C.S. SCARL COLLEZIONE NAZIONALE DEI COMPOSTI CHIMICI E CENTRO SCREENING; ALTAMURA, Sergio; BIANCOFIORE, Ilaria; BRESCIANI, Alberto; FERRIGNO, Federica; HARPER, Steven; LAUFER, Ralph; ONTORIA ONTORIA, Jesus Maria; MALANCONA, Savina; MONTEAGUDO, Edith; NIZI, Emanuela; ORSALE, Maria Vittoria; PONZI, Simona; PAONESSA, Giacomo; SUMMA, Vincenzo; VENEZIANO, Maria; WO2014/67985; (2014); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

A new synthetic route of Ethyl quinuclidine-4-carboxylate

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

A common heterocyclic compound, 22766-68-3,Ethyl quinuclidine-4-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 22766-68-3

Example 33 Preparation of 1-azabicyclo[2.2.2]oct-4-yl(di-3-thienyl)methanol A solution of t-Butyl lithium (1.7M in pentanes, 5.8 mL, 9.86 mmol) was chilled to -78 C. under Ar. 3-Bromothiophene (0.46 mL, 4.90 mmol) dissolved in THF (4.0 mL) was slowly added to the reaction mixture over 6 min. The reaction was stirred for 30 min and then ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.3132 g, 1.71 mmol) in THF (4 mL) was added. The reaction was allowed to warm up from -78 C. to room temperature over 16 h. After 14 hours, the reaction was slowly quenched with water. EtOAc was added, causing a grey solid to crash out. The solid was filtered off to give the title compound (0.3375 g, 64.6%). EI-MS m/z 306(M+H)+ Rt (1.27 min).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

New downstream synthetic route of 40117-63-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,its application will become more common.

A common heterocyclic compound, 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 40117-63-3

Under the protection of nitrogen, phenyllithium (1.5 – 1.7M cyclohexane/diethyl ether solution (70:30), 30.0 ml, 48.00mmol) solution cooled to -30 C, in -30 C under, 0.5 hours slowly dropping WD2 (2.27g, 12 . 35mmol) of THF (30 ml) solution to the reaction mixture. The reaction liquid heating to room temperature reaction 16 hours, adding water quenching reaction, mixed solution under vacuum to evaporate to dry, adding water and ethyl acetate, to obtain white solid to settle out, filtering to obtain solid, shall WD1 (1.19g). The aqueous phase is further extracted with ethyl acetate, the combined organic layer was dried with anhydrous sodium sulfate, filtered, concentrated under reduced pressure to get the crude product, the crude product of ethyl acetate and hexane processing, filtering to obtain WD1., 40117-63-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,its application will become more common.

Reference£º
Patent; Sichuan Hai Sike Pharmaceutical Co., Ltd.; Yi Shixu; Fu Li; (6 pag.)CN106810546; (2017); A;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

The origin of a common compound about 40117-63-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,its application will become more common.

A common heterocyclic compound, 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 40117-63-3

Step 1. Quinuclidin-4-ylmethanol Quinuclidine-4-carboxylic acid hydrochloride (6.0 g, 0.03 1 mmoles) in tetrahydrofuran (300 ml) was treated with lithium aluminum hydride (5.0 g, 0.137 mmoles) at ambient temperature for 18 hours. Water (20 ml) and 10% aqueous sodium hydroxide (7.5 ml) was added carefully and the mixture filtered, washing with diethyl ether. The combined filtrates were evaporated to dryness to give the title compound as a white solid 4.04 g, (91%): MS (+ve ion electrospray) m/z 142 (MH+, 100%)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,its application will become more common.

Reference£º
Patent; SmithKline Beecham p.l.c.; US6281226; (2001); B1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

A new synthetic route of Ethyl quinuclidine-4-carboxylate

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

A common heterocyclic compound, 22766-68-3,Ethyl quinuclidine-4-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 22766-68-3

1-azabicyclo[2.2.2]oct-4-yl[bis(4-methylphenyl)]methanol A solution of 4-methylphenylmagnesiumbromide (1.0 M in THF, 3.3 mL, 3.3 mmol) was chilled down to 0 C. under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.1509 g, 0.823 mmol) in THF (4 mL) was slowly added to the reaction mixture at 0 C. over 20 min. The reaction was allowed to warm up to room temperature and then heated at 60 C. for 16 h. The reaction was chilled in an ice bath, quenched with saturated NH4Cl, and concentrated under vacuum. The resulting residue was treated with H2O and extracted with EtOAc. The combined organic layers were dried with MgSO4, filtered, and concentrated under vacuum to yield the desired product (0.2291 g, 86.6%). EI-MS m/z 322(M+H+) Rt (1.57 min).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Some scientific research about Ethyl quinuclidine-4-carboxylate

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

22766-68-3 A common heterocyclic compound, 22766-68-3,Ethyl quinuclidine-4-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

A solution of phenyllithium (1 .9 M in 70 cyclohexane/30 ether, 22.30 mL, 42.40 mmol) was cooled down to -30C under nitrogen. A solution of ethyl 1 -azabicyclo[2.2.2]octane-4-carboxylate (III, 2.0 g, 10.90 mmol) in THF (27.0 mL) was slowly added to the reaction mixture at -30C over 25 mins. The reaction mixture was allowed to warm up to room temperature over 16h. The reaction was quenched with water (10.0 mL) and then evaporated to dryness under vacuum. Water (40.0 mL) and ethyl acetate (40.0 mL) were added, causing a white solid to crash out. This solid was filtered off under vacuum, to give a white powder (2.46 g, 76.8%). 1 -azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol (IV): ^H-NMR (300 MHz, CDC ) delta 7.54 – 7.51 (m, 3H), 7.33 – 7.20 (m, 6H), 2.85 – 2.80 (m, 6H), 1 .78 – 1.72 (m, 6H). MS (ESI) m/z calcd for C20H23NO: 293, found 294 [M + H]+.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

Reference£º
Patent; HOVIONE SCIENTIA LIMITED; TURNER, Craig; LOURENCO, Nuno Torres; SOBRAL, Luis; ANTUNES, Rafael; SANTOS, Maria; ESPADINHA, Margarida; (35 pag.)WO2018/87561; (2018); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

A new synthetic route of Quinuclidine-4-carboxylic acid hydrochloride

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,its application will become more common.

A common heterocyclic compound, 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 40117-63-3

Step 5: (S)-4-((1-(5-(6-methoxynaphthalen-2-yl)-JH-imidazol-3-ium-2-yl)- 7-(methylamino)- 7-oxoheptyl)carbamoyl)quinuclidin-1-ium mono L-tartrate salt (E5) A solution of 4-carboxyquinuclidin-1-ium chlorhydrate (1.3 eq.) in DMF (0.2 M) was treated with TBTU (1.3 eq.) and NMM (2.6 eq.). The reaction mixture was stirred at room temperature for 10 mm and then added to a solution of E4 in DMF (0.2 M). The reaction was stirred at RT for 2 h, then filtered and purified by RP-HPLC (CH3CN/H20 + 0.1 % TFA). The product was obtained as TFA salt which was partitioned between EtOAc and sat. aq. NaHCO3. The organicphase was separated, dried (Na2504) and concentrated under reduced pressure. The resulting pale yellow solid was dissolved in acetonitrile/H20 (1:1) and treated with L-tartaric acid (1 eq.). The resulting solution was lyophilized to obtain the title compound. (400 MHz, 300K, DMSOd 6) oe: 11.5 (br s, 1H), 8.14 (br s, 1H), 7.95-7.73 (m, 4H), 7.66 (m, 1H), 7.54 (m, 1H), 7.27 (d, 1H, J2 Hz), 7.12 (dd, 1H, J8.8 and 2.4 Hz), 4.99 (m, 1H), 3.89 (s, 2H), 3.86 (s, 3H), 3.16 (m,6H), 2.54 (d, J4.4 Hz), 3H), 2.02 (t, 2H, J7.4 Hz), 2.01 (m, 6H), 1.83 (m, 2H), 1.48 (m, 2H),1.35-1.15 (m, 4H). MS (ESj C30H39N503: 518 (M+H).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,its application will become more common.

Reference£º
Patent; IRBM SCIENCE PARK S.P.A.; C.N.C.C.S. SCARL COLLEZIONE NAZIONALE DEI COMPOSTI CHIMICI E CENTRO SCREENING; ALTAMURA, Sergio; BIANCOFIORE, Ilaria; BRESCIANI, Alberto; FERRIGNO, Federica; HARPER, Steven; LAUFER, Ralph; ONTORIA ONTORIA, Jesus Maria; MALANCONA, Savina; MONTEAGUDO, Edith; NIZI, Emanuela; ORSALE, Maria Vittoria; PONZI, Simona; PAONESSA, Giacomo; SUMMA, Vincenzo; VENEZIANO, Maria; WO2014/67985; (2014); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider