Some scientific research about Ethyl quinuclidine-4-carboxylate

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

22766-68-3 A common heterocyclic compound, 22766-68-3,Ethyl quinuclidine-4-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Crude preparation: azabicyclo [2.2.2] octane-4-carboxylic acid ethyl ester (18.3g, 0 . 10mol) dissolved in 3L tetrahydrofuran, under the protection of nitrogen, the solution is cooled down 5-15C, dropwise 0.30mol phenyl magnesium bromide. 5-15 C preserving heat and stirring 1 hour later (sampling TLC monitoring reaction progress). Add 10 ml water quenching. The liquid, aqueous phase using 100 ml tetrahydrofuran extraction two, combined with the phase water washing, drying and filtering. Removing part of the solvent under reduced pressure, the rest about 50 ml, residues 20 C stirring sleepovers crystallization. Filtering, washing (petroleum ether 2¡Á20 ml), the filtration cake at 40 C vacuum drying, be yellowish crystal 13.80g, yield 47.1%.Refining wuhu bromine ammonium : crude 100g dissolved in 80 C of 320 ml water-acetone 640 ml mixture, and 5g activated carbon decolourizations, filtering. Filtrate lower the temperature to 25 C, thermal insulation 1 hour. 1-2 hours to lower the temperature to 0-5 C and thermal insulation 3 hours. Filtering, the filter cake is washed with frozen 1:2 acetone-water washing two times (2x20ml). The filtration cake at 60 C vacuum drying, getting white crystalline solid (92g, yield 92%). (Normalization HPLC) purity of 99.25%.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

Reference£º
Patent; Anhui Dexinjia Biopharm Co., Ltd.; Li, Xuekun; Xu, Kun; (5 pag.)CN105461710; (2016); A;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

The origin of a common compound about 22766-68-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

A common heterocyclic compound, 22766-68-3,Ethyl quinuclidine-4-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 22766-68-3

Example 13: Preparation of 4-[cyano(di-2-thienyl)methyl]-1-[3- (DhenVIoxVlDroDVIl-1-azoniabicvclo [2.2.210ctane bromide;. 1-Azabicyclof2. 2. 2 Joct-4-yl(di-2-thienyl)methanol; A solution of 2-thienyllithium (1.0 M in THF, 13.0 mL, 13 mmol) was chilled down to -30 C under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.77 g, 4.20 mmol) in THF (12 mL) was slowly added to the 2-thienyllithium at-30 C over 40 min. The reaction was allowed to warm up to room temperature for overnight. The reaction was quenched with H20 and then diluted with EtOAC, hexane and DCM causing a solid to crash out of solution. The solid was filtered off, resulting in the desired compound (0.9132 g, 71.3%). EI-MS m/z 306 (M+) Rt (1.33 min).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

Reference£º
Patent; GLAXO GROUP LIMITED; WO2005/112644; (2005); A2;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Some scientific research about Ethyl quinuclidine-4-carboxylate

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

22766-68-3 A common heterocyclic compound, 22766-68-3,Ethyl quinuclidine-4-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Example 32 Preparation of 1-butyl-4-[hydroxy(di-3-thienyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide A solution of n-Butyl lithium (2.5M in hexanes, 5.0 mL, 12.5 mmol) was chilled to -78 C. under Ar. 3-Bromothiophene (1.15 mL, 12.3 mmol) dissolved in ethyl ether (4.0 mL) was slowly added to the reaction mixture. The reaction was stirred for 30 min and then ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.7640 g, 4.16 mmol) in THF/Et2O (4 mL/4 mL) was added. The reaction was allowed to warm up from -78 C. to room temperature over 16 h then slowly quenched with water. The reaction was concentrated and the resulting brown solid was taken up in water and DCM. The organic phase was separated, dried over MgSO4, filtered and concentrated under vacuum to give a brown solid. The solid was dissolved in DMSO and purified by preparatory HPLC to give the title compound (0.1736 g, 9.4%). EI-MS m/z 362(M+) Rt (1.73 min).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Some scientific research about Ethyl quinuclidine-4-carboxylate

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

22766-68-3 A common heterocyclic compound, 22766-68-3,Ethyl quinuclidine-4-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

1-azabicyclo[2.2.2]oct-4-yl[bis(3-fluorophenyl)]methanol A solution of 3-fluorophenylmagnesiumbromide (1.0 M in THF, 3.3 mL, 3.3 mmol) was chilled down to 0 C. under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.1756 g, 0.958 mmol) in THF (4 mL) was slowly added to the reaction mixture at 0 C. over 20 min. The reaction was allowed to warm up to room temperature and then heated at 60 C. for 16 h. The reaction was chilled in an ice bath, quenched with saturated NH4Cl, and concentrated under vacuum. The resulting residue was treated with H2O and extracted with EtOAc. The combined organic layers were dried with MgSO4, filtered, and concentrated under vacuum to yield the desired product (0.242 g, 76.7%). EI-MS m/z 330(M+H+) Rt (1.45 min).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

A new synthetic route of Ethyl quinuclidine-4-carboxylate

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

A common heterocyclic compound, 22766-68-3,Ethyl quinuclidine-4-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 22766-68-3

Ethyl quinuclidine-4-carboxylate (900 mg, 4.91 mmol) was hydrolyzed in a mixture of ethanol (2 mL) and sodium hydroxide (aq) (2M, 7.5 mL) at 50 C. The reaction was followed by TLC (methanol/diethylamine 20/1). After 3 hours the mixture was neutralized with HC1 (2 M) to pH=5 and evaporated. The residue was extracted with methanol which however also extracted NaCl. The extract was evaporated and the solid was extracted with ethanol which was not very effective in extracting the desired zwitterionic amino acid. All extracts and solids were combined and HC1 (2 M) was added to pH< 1 and the mixture was evaporated until it was completely dry. The solid residue was suspended in dichioromethane (10 mL) and oxalyl chloride (25 mmol, 2.3 mL) was added followed by two drops of N,N-dimethylformamide. The mixture was refluxed for 6 hours and then evaporated to dryness. To the residue was added N,N-dimethylformamide (10 mL) and sodium azide (10.4 mmol, 680 mg) and the mixture was stirred at 50 C for 20 h, then partitioned between saturated sodium carbonate and toluene. A three phase liquid system was formed. The toluene phase (on top) was collected, dried, and heated at reflux for 1 hours (visible gas formation occurred before reaching the reflux temperature), then cooled and extracted three times with HC1 (SM, 3 x 20 mL). The aqueous phases were combined and heated at reflux for 1 h, then evaporated to almost dryness and triturated with abs. ethanol. The precipitate was collected and gave the desired 4-aminoquinuclidine as the dihydrochloride (173 mg, 0.87 mmol, 18% yield). ?H NMR (400 MHz, deuterium oxide) 3.68- 3.52 (m, 4H), 2.37-2.23 (m, 4H). This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common. Reference£º
Patent; ACADIA PHARMACEUTICALS INC.; BURSTEIN, Ethan, S.; OLSSON, Roger; JANSSON, Karl, Erik; SKOeLD, Niklas, Patrik; WAHLSTROeM, Larisa, Yudina; VON WACHENFELDT, Henrik; BERGNER, Magnus, Gustav Wilhelm; DREISCH, Klaus; POPOV, Kyrylo; KOVALENKO, Oleksnadr; KLINGSTEDT, Per Tomas; (357 pag.)WO2019/40106; (2019); A2;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

The origin of a common compound about Quinuclidine-4-carboxylic acid hydrochloride

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,its application will become more common.

A common heterocyclic compound, 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 40117-63-3

Example 1(Quinuclidin-4-yl)methanol (Quinuclidin-4-yl)carboxylic acid was prepared from 4-cyanoquinuclidine (Oakwood Products) following the procedure of Grob and Renk, Helv. Chim. Acta, 37, 1681 (1954).To a stirred suspension of quinuclidine-4-carboxylic acid hydrochloride (100 mg, 0.523 mmol) in 3 mL of anhydrous tetrahydrofuran at 0 C. was added borane methylsulfide complex (42 mg, 0.553 mmol). The mixture was stirred at room temperature for 1 hr and heated to reflux overnight. The reaction was cooled to 0 C. and carefully treated with 1 mL of methanol. The solvent was then removed under reduced pressure to leave the desired alcohol. Yield 36 mg. MS (m/e): 141.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride,its application will become more common.

Reference£º
Patent; CoMentis, Inc.; US2009/88418; (2009); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

A new synthetic route of Ethyl quinuclidine-4-carboxylate

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

A common heterocyclic compound, 22766-68-3,Ethyl quinuclidine-4-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 22766-68-3

A solution of phenyllithium (1 .9 M in 70 cyclohexane/30 ether, 22.30 mL, 42.40 mmol) was cooled down to -30C under nitrogen. A solution of ethyl 1 -azabicyclo[2.2.2]octane-4-carboxylate (III, 2.0 g, 10.90 mmol) in THF (27.0 mL) was slowly added to the reaction mixture at -30C over 25 mins. The reaction mixture was allowed to warm up to room temperature over 16h. The reaction was quenched with water (10.0 mL) and then evaporated to dryness under vacuum. Water (40.0 mL) and ethyl acetate (40.0 mL) were added, causing a white solid to crash out. This solid was filtered off under vacuum, to give a white powder (2.46 g, 76.8%). 1 -azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol (IV): ^H-NMR (300 MHz, CDC ) delta 7.54 – 7.51 (m, 3H), 7.33 – 7.20 (m, 6H), 2.85 – 2.80 (m, 6H), 1 .78 – 1.72 (m, 6H). MS (ESI) m/z calcd for C20H23NO: 293, found 294 [M + H]+.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

Reference£º
Patent; HOVIONE SCIENTIA LIMITED; TURNER, Craig; LOURENCO, Nuno Torres; SOBRAL, Luis; ANTUNES, Rafael; SANTOS, Maria; ESPADINHA, Margarida; (35 pag.)WO2018/87561; (2018); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Some scientific research about 40117-63-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,its application will become more common.

A common heterocyclic compound, 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 40117-63-3

Step 5: (S)-4-((1-(5-(6-methoxynaphthalen-2-yl)-JH-imidazol-3-ium-2-yl)- 7-(methylamino)- 7-oxoheptyl)carbamoyl)quinuclidin-1-ium mono L-tartrate salt (E5) A solution of 4-carboxyquinuclidin-1-ium chlorhydrate (1.3 eq.) in DMF (0.2 M) was treated with TBTU (1.3 eq.) and NMM (2.6 eq.). The reaction mixture was stirred at room temperature for 10 mm and then added to a solution of E4 in DMF (0.2 M). The reaction was stirred at RT for 2 h, then filtered and purified by RP-HPLC (CH3CN/H20 + 0.1 % TFA). The product was obtained as TFA salt which was partitioned between EtOAc and sat. aq. NaHCO3. The organicphase was separated, dried (Na2504) and concentrated under reduced pressure. The resulting pale yellow solid was dissolved in acetonitrile/H20 (1:1) and treated with L-tartaric acid (1 eq.). The resulting solution was lyophilized to obtain the title compound. (400 MHz, 300K, DMSOd 6) oe: 11.5 (br s, 1H), 8.14 (br s, 1H), 7.95-7.73 (m, 4H), 7.66 (m, 1H), 7.54 (m, 1H), 7.27 (d, 1H, J2 Hz), 7.12 (dd, 1H, J8.8 and 2.4 Hz), 4.99 (m, 1H), 3.89 (s, 2H), 3.86 (s, 3H), 3.16 (m,6H), 2.54 (d, J4.4 Hz), 3H), 2.02 (t, 2H, J7.4 Hz), 2.01 (m, 6H), 1.83 (m, 2H), 1.48 (m, 2H),1.35-1.15 (m, 4H). MS (ESj C30H39N503: 518 (M+H).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,its application will become more common.

Reference£º
Patent; IRBM SCIENCE PARK S.P.A.; C.N.C.C.S. SCARL COLLEZIONE NAZIONALE DEI COMPOSTI CHIMICI E CENTRO SCREENING; ALTAMURA, Sergio; BIANCOFIORE, Ilaria; BRESCIANI, Alberto; FERRIGNO, Federica; HARPER, Steven; LAUFER, Ralph; ONTORIA ONTORIA, Jesus Maria; MALANCONA, Savina; MONTEAGUDO, Edith; NIZI, Emanuela; ORSALE, Maria Vittoria; PONZI, Simona; PAONESSA, Giacomo; SUMMA, Vincenzo; VENEZIANO, Maria; WO2014/67985; (2014); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

New downstream synthetic route of 22766-68-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Ethyl quinuclidine-4-carboxylate,22766-68-3,its application will become more common.

A common heterocyclic compound, 22766-68-3,Ethyl quinuclidine-4-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 22766-68-3

To a solution of ethyl 1-aza-bicyclo[2.2.2]octane-4-carboxylate (PCT2005104745) (9.610 g, 52.44 mmol) in THF (480 ml) at -780C was added borane-THF complex (73.41 ml,73.41 mmol) and the resulting solution was stirred at this temperature for 3.5 h. The reaction was quenched with slow addition of H2O (50 ml), warmed to RT, and allowed to stir for 45 min. The solution was diluted with EtOAc (100 ml), washed with brine (15 ml), extracted with EtOAc (3 x 50 ml), dried (Na2SO4) and evaporated. The crude product was purified on a CombiFlash companion using 0-50% EtOAc in cyclohexane as eluent to give a bright yellow solid.Yield: 7.236 g (70%)1 H NMR (400 MHz, CDCI3) delta = 4.15 (q, 2H), 3.07 (t, 4H)1 1.96 (t, 4H), 1.26 (t, 3H) ppm.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,Ethyl quinuclidine-4-carboxylate,22766-68-3,its application will become more common.

Reference£º
Patent; ARGENTA DISCOVERY LIMITED; WO2009/60206; (2009); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

A new synthetic route of 22766-68-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

A common heterocyclic compound, 22766-68-3,Ethyl quinuclidine-4-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 22766-68-3

In a 500 mL three-necked flask, phenyllithium (160 mL, lM in THF) was treated with nitrogen Was slowly added dropwise to a solution of compound 1-4 (6.8 g, 0.04momicron1) in tetrahydrofuran (120 mL) Control the temperature at -50 C and stir at room temperature overnight. Water (200 mL) was added to quench the reaction, Extracted with ethyl acetate (500 mL), the organic layer was washed with saturated brine, dried over sodium sulfate, The solvent was evaporated under reduced pressure to give 6.8 g of a brown viscous solid, Ethyl acetate: petroleum ether = 1: 2 (200 mL) was added and stirred at room temperature for 2 h, filtered, The filter cake was washed with petroleum ether and dried to give a 5.1g lime light gray solid.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

Reference£º
Patent; Yifang Bio-technology (Shanghai) Co., Ltd.; Dai Xing; Jiang Yueheng; Wang Yaolin; (26 pag.)CN107200734; (2017); A;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider