New downstream synthetic route of Ethyl quinuclidine-4-carboxylate

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand Ethyl quinuclidine-4-carboxylate reaction routes.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.22766-68-3, Ethyl quinuclidine-4-carboxylate it is a common compound, a new synthetic route is introduced below.22766-68-3

Example 32 Preparation of 1-butyl-4-[hydroxy(di-3-thienyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide A solution of n-Butyl lithium (2.5M in hexanes, 5.0 mL, 12.5 mmol) was chilled to -78 C. under Ar. 3-Bromothiophene (1.15 mL, 12.3 mmol) dissolved in ethyl ether (4.0 mL) was slowly added to the reaction mixture. The reaction was stirred for 30 min and then ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.7640 g, 4.16 mmol) in THF/Et2O (4 mL/4 mL) was added. The reaction was allowed to warm up from -78 C. to room temperature over 16 h then slowly quenched with water. The reaction was concentrated and the resulting brown solid was taken up in water and DCM. The organic phase was separated, dried over MgSO4, filtered and concentrated under vacuum to give a brown solid. The solid was dissolved in DMSO and purified by preparatory HPLC to give the title compound (0.1736 g, 9.4%). EI-MS m/z 362(M+) Rt (1.73 min).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand Ethyl quinuclidine-4-carboxylate reaction routes.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider