The origin of a common compound about Quinuclidine-4-carboxylic acid hydrochloride

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand Quinuclidine-4-carboxylic acid hydrochloride reaction routes.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.40117-63-3, Quinuclidine-4-carboxylic acid hydrochloride it is a common compound, a new synthetic route is introduced below.40117-63-3

Preparation of 3-fluorobenzyl quinuclidine-4-carboxylate (compound 91)A mixture of quinuclidine-4-carboxylic acid hydrochloride (100 mg, 0.52 mmol) and thionyl chloride (500 mu, 6.85 mmol) was refluxed for 2 hours. The reaction was cooled at room temperature and the solvent was accurately removed. The residue was suspended in dry DCM and treated with (3-fluorophenyl)methanol (65.8 mg, 0.52 mmol). The reaction was stirred at room temperature for 24 hours. The solvent was evaporated, the residue was dissolved in water (1 ml), basified with NaHCO3 and extracted twice with EtOAc. The combined organic layers were dried over Na2SO4, filtered and evaporated to obtain 3-fluorobenzyl quinuclidine-4-carboxylate (41 mg, 29.8 % yield), which was used in the next step without any further purification.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand Quinuclidine-4-carboxylic acid hydrochloride reaction routes.

Reference£º
Patent; CHIESI FARMACEUTICI S.p.A.; AMARI, Gabriele; RICCABONI, Mauro; DE ZANI, Daniele; WO2012/146515; (2012); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Discovery of Quinuclidine-4-carboxylic acid hydrochloride

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, Quinuclidine-4-carboxylic acid hydrochloride.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.40117-63-3

Step 4. Quinuclidin-4-ylcarbonyl chloride hydrochloride Quinuclidine-4-carboxylic acid hydrochloride (0.192 g, 0.001 mole) was suspended in dichloromethane (5 ml) and dimethylformamide (1 drop) and oxalyl chloride (0.436 ml. 0.635 g, 0.005 mole) were added. The resulting suspension was heated to reflux under an atmosphere of argon for six hours. Following concentration of the suspension in vacuo the residue was suspended in dichloromethane, concentrated in vacuo and finally dried in vacuo to give the title compound as a pale brown solid.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, Quinuclidine-4-carboxylic acid hydrochloride.

Reference£º
Patent; SmithKline Beecham p.l.c.; US6281226; (2001); B1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Discovery of 22766-68-3

According to the analysis of related databases, 22766-68-3, the application of this compound in the production field has become more and more popular.

Adding a certain compound to certain chemical reactions, such as: 22766-68-3,Ethyl quinuclidine-4-carboxylate, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 22766-68-3,22766-68-3

Example 13: Preparation of 4-[cyano(di-2-thienyl)methyl]-1-[3- (DhenVIoxVlDroDVIl-1-azoniabicvclo [2.2.210ctane bromide;. 1-Azabicyclof2. 2. 2 Joct-4-yl(di-2-thienyl)methanol; A solution of 2-thienyllithium (1.0 M in THF, 13.0 mL, 13 mmol) was chilled down to -30 C under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.77 g, 4.20 mmol) in THF (12 mL) was slowly added to the 2-thienyllithium at-30 C over 40 min. The reaction was allowed to warm up to room temperature for overnight. The reaction was quenched with H20 and then diluted with EtOAC, hexane and DCM causing a solid to crash out of solution. The solid was filtered off, resulting in the desired compound (0.9132 g, 71.3%). EI-MS m/z 306 (M+) Rt (1.33 min).

According to the analysis of related databases, 22766-68-3, the application of this compound in the production field has become more and more popular.

Reference£º
Patent; GLAXO GROUP LIMITED; WO2005/112644; (2005); A2;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Continuously updated synthesis method about Quinuclidine-4-carbonitrile

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. 26458-78-6, We look forward to the emergence of more reaction modes in the future.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 26458-78-6,Quinuclidine-4-carbonitrile, as follows.26458-78-6

Quinuclidine-4-carbonitrile (4 g, 29.4 mmol) was treated with 30 mL of 6 N aqueous HCl solution and stirred under reflux for 16 hr. The reaction mixture was cooled and evaporated to dryness under reduced pressure. The solid obtained was triturated with 20% ether-hexane to afford the HCl salt of quinuclidine-4-carboxylic acid (5.5 g, quantitative).

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. 26458-78-6, We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; CoMentis, Inc.; BILCER, Geoffrey M.; NG, Raymond; (104 pag.)US2016/9706; (2016); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Discovery of Ethyl quinuclidine-4-carboxylate

According to the analysis of related databases, Ethyl quinuclidine-4-carboxylate, the application of this compound in the production field has become more and more popular.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 22766-68-3,Ethyl quinuclidine-4-carboxylate, as follows.22766-68-3

1-azabicyclo[2.2.2]oct-4-yl(di-2-naphthalenyl)methanol A solution of (2-naphthalenyl)magnesiumbromide (0.5 M in THF, 6.5 mL, 3.25 mmol) was chilled down to 0 C. under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.1597 g, 0.871 mmol) in THF (4 mL) was slowly added to the reaction mixture at 0 C. over 20 min. The reaction was allowed to warm up to room temperature and then heated at 60 C. for 16 h. The reaction was chilled in an ice bath, quenched with saturated NH4Cl, and concentrated under vacuum. The resulting residue was treated with H2O and extracted with EtOAc. The combined organic layers were dried with MgSO4, filtered, and concentrated under vacuum to yield the desired product (0.265 g, 77.3%). EI-MS m/z 394(M+H+) Rt (1.90 min).

According to the analysis of related databases, Ethyl quinuclidine-4-carboxylate, the application of this compound in the production field has become more and more popular.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Extended knowledge of Ethyl quinuclidine-4-carboxylate

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 22766-68-3.

22766-68-3,Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. Ethyl quinuclidine-4-carboxylate,22766-68-3, This compound has unique chemical properties. The synthetic route is as follows.

1-azabicyclo[2.2.2]oct-4-yl[bis(3-fluorophenyl)]methanol A solution of 3-fluorophenylmagnesiumbromide (1.0 M in THF, 3.3 mL, 3.3 mmol) was chilled down to 0 C. under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.1756 g, 0.958 mmol) in THF (4 mL) was slowly added to the reaction mixture at 0 C. over 20 min. The reaction was allowed to warm up to room temperature and then heated at 60 C. for 16 h. The reaction was chilled in an ice bath, quenched with saturated NH4Cl, and concentrated under vacuum. The resulting residue was treated with H2O and extracted with EtOAc. The combined organic layers were dried with MgSO4, filtered, and concentrated under vacuum to yield the desired product (0.242 g, 76.7%). EI-MS m/z 330(M+H+) Rt (1.45 min).

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 22766-68-3.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Discovery of 40117-63-3

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. Quinuclidine-4-carboxylic acid hydrochloride, We look forward to the emergence of more reaction modes in the future.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 40117-63-3,Quinuclidine-4-carboxylic acid hydrochloride, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.40117-63-3

Preparation of 3-fluorobenzyl quinuclidine-4-carboxylate (compound 91)A mixture of quinuclidine-4-carboxylic acid hydrochloride (100 mg, 0.52 mmol) and thionyl chloride (500 mu, 6.85 mmol) was refluxed for 2 hours. The reaction was cooled at room temperature and the solvent was accurately removed. The residue was suspended in dry DCM and treated with (3-fluorophenyl)methanol (65.8 mg, 0.52 mmol). The reaction was stirred at room temperature for 24 hours. The solvent was evaporated, the residue was dissolved in water (1 ml), basified with NaHCO3 and extracted twice with EtOAc. The combined organic layers were dried over Na2SO4, filtered and evaporated to obtain 3-fluorobenzyl quinuclidine-4-carboxylate (41 mg, 29.8 % yield), which was used in the next step without any further purification.

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. Quinuclidine-4-carboxylic acid hydrochloride, We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; CHIESI FARMACEUTICI S.p.A.; AMARI, Gabriele; RICCABONI, Mauro; DE ZANI, Daniele; WO2012/146515; (2012); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

The origin of a common compound about Ethyl quinuclidine-4-carboxylate

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

A common heterocyclic compound, 22766-68-3,Ethyl quinuclidine-4-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 22766-68-3

1-azabicyclo[2.2.2]oct-4-yl{bis[4-(methyloxy)phenyl]}methanol A solution of 4-(methyloxy)phenylmagnesiumbromide (0.5 M in THF, 6.5 mL, 3.25 mmol) was chilled down to 0 C. under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.1587 g, 0.866 mmol) in THF (4 mL) was slowly added to the reaction mixture at 0 C. over 20 min. The reaction was allowed to warm up to room temperature and then heated at 60 C. for 16 h. The reaction was chilled in an ice bath, quenched with saturated NH4Cl, and concentrated under vacuum. The resulting residue was treated with H2O and extracted with EtOAc. The combined organic layers were dried with MgSO4, filtered, and concentrated under vacuum to yield the desired product (0.273 g, 89.0%). EI-MS m/z 354(M+H+) Rt (1.74 min).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Extended knowledge of 22766-68-3

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, Ethyl quinuclidine-4-carboxylate.

22766-68-3,Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials.22766-68-3,A new synthetic method of this compound is introduced below.

Example 33 Preparation of 1-azabicyclo[2.2.2]oct-4-yl(di-3-thienyl)methanol A solution of t-Butyl lithium (1.7M in pentanes, 5.8 mL, 9.86 mmol) was chilled to -78 C. under Ar. 3-Bromothiophene (0.46 mL, 4.90 mmol) dissolved in THF (4.0 mL) was slowly added to the reaction mixture over 6 min. The reaction was stirred for 30 min and then ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.3132 g, 1.71 mmol) in THF (4 mL) was added. The reaction was allowed to warm up from -78 C. to room temperature over 16 h. After 14 hours, the reaction was slowly quenched with water. EtOAc was added, causing a grey solid to crash out. The solid was filtered off to give the title compound (0.3375 g, 64.6%). EI-MS m/z 306(M+H)+ Rt (1.27 min).

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, Ethyl quinuclidine-4-carboxylate.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

The origin of a common compound about Ethyl quinuclidine-4-carboxylate

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

A common heterocyclic compound, 22766-68-3,Ethyl quinuclidine-4-carboxylate, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 22766-68-3

1-azabicyclo[2.2.2]oct-4-yl[bis(4-methylphenyl)]methanol A solution of 4-methylphenylmagnesiumbromide (1.0 M in THF, 3.3 mL, 3.3 mmol) was chilled down to 0 C. under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.1509 g, 0.823 mmol) in THF (4 mL) was slowly added to the reaction mixture at 0 C. over 20 min. The reaction was allowed to warm up to room temperature and then heated at 60 C. for 16 h. The reaction was chilled in an ice bath, quenched with saturated NH4Cl, and concentrated under vacuum. The resulting residue was treated with H2O and extracted with EtOAc. The combined organic layers were dried with MgSO4, filtered, and concentrated under vacuum to yield the desired product (0.2291 g, 86.6%). EI-MS m/z 322(M+H+) Rt (1.57 min).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,22766-68-3,Ethyl quinuclidine-4-carboxylate,its application will become more common.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider