The effect of the change of Quinuclidine-4-carboxylic acid hydrochloride synthetic route on the product

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Quinuclidine-4-carboxylic acid hydrochloride, , We look forward to the emergence of more reaction modes in the future.

A balanced equation for a chemical reaction indicates what is reacting and what is produced, but it reveals nothing about how the reaction actually takes place., 40117-63-3. The reaction mechanism is the process, or pathway, by which a reaction occurs.40117-63-3. An updated downstream synthesis route of 40117-63-3 as follows.

1. Preparation of 3-fluorobenzyl quinuclidine-4-carboxylate (Compound 91). A mixture of quinuclidine-4-carboxylic acid hydrochloride (100 mg, 0.52 mmol) and thionyl chloride (500 mul, 6.85 mmol) was refluxed for 2 hours. The reaction was cooled to room temperature, and the solvent was accurately removed. The residue was suspended in dry DCM and treated with (3-fluorophenyl)methanol (65.8 mg, 0.52 mmol). The reaction was stirred at room temperature for 24 hours. The solvent was evaporated, and the residue was dissolved in water (1 ml), basified with NaHCO3 and extracted twice with EtOAc. The combined organic layers were dried over Na2SO4, filtered, and evaporated to obtain 3-fluorobenzyl quinuclidine-4-carboxylate (41 mg, 29.8% yield), which was used in the next step without any further purification.

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Quinuclidine-4-carboxylic acid hydrochloride, , We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; Chiesi Farmaceutici S.p.A.; US2012/276018; (2012); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

The influence of catalyst in Ethyl quinuclidine-4-carboxylate reaction

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

22766-68-3, One of the major reasons is to use measurements of the macroscopic properties of a system, the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level. 22766-68-3, introduce a new downstream synthesis route.

Example 13: Preparation of 4-[cyano(di-2-thienyl)methyl]-1-[3- (DhenVIoxVlDroDVIl-1-azoniabicvclo [2.2.210ctane bromide;. 1-Azabicyclof2. 2. 2 Joct-4-yl(di-2-thienyl)methanol; A solution of 2-thienyllithium (1.0 M in THF, 13.0 mL, 13 mmol) was chilled down to -30 C under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.77 g, 4.20 mmol) in THF (12 mL) was slowly added to the 2-thienyllithium at-30 C over 40 min. The reaction was allowed to warm up to room temperature for overnight. The reaction was quenched with H20 and then diluted with EtOAC, hexane and DCM causing a solid to crash out of solution. The solid was filtered off, resulting in the desired compound (0.9132 g, 71.3%). EI-MS m/z 306 (M+) Rt (1.33 min).

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; GLAXO GROUP LIMITED; WO2005/112644; (2005); A2;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Derivation of elementary reaction about Quinuclidine-4-carboxylic acid hydrochloride

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Quinuclidine-4-carboxylic acid hydrochloride,, you can also browse my other articles. Thank you very much for taking the time to read this article.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism., 40117-63-340117-63-3, If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 40117-63-3, name is Quinuclidine-4-carboxylic acid hydrochloride. A new synthetic method of this compound is introduced below.

Preparation of 3-fluorobenzyl quinuclidine-4-carboxylate (compound 91)A mixture of quinuclidine-4-carboxylic acid hydrochloride (100 mg, 0.52 mmol) and thionyl chloride (500 mu, 6.85 mmol) was refluxed for 2 hours. The reaction was cooled at room temperature and the solvent was accurately removed. The residue was suspended in dry DCM and treated with (3-fluorophenyl)methanol (65.8 mg, 0.52 mmol). The reaction was stirred at room temperature for 24 hours. The solvent was evaporated, the residue was dissolved in water (1 ml), basified with NaHCO3 and extracted twice with EtOAc. The combined organic layers were dried over Na2SO4, filtered and evaporated to obtain 3-fluorobenzyl quinuclidine-4-carboxylate (41 mg, 29.8 % yield), which was used in the next step without any further purification.

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Quinuclidine-4-carboxylic acid hydrochloride,, you can also browse my other articles. Thank you very much for taking the time to read this article.

Reference£º
Patent; CHIESI FARMACEUTICI S.p.A.; AMARI, Gabriele; RICCABONI, Mauro; DE ZANI, Daniele; WO2012/146515; (2012); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Derivation of elementary reaction about Quinuclidine-4-carboxylic acid hydrochloride

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Quinuclidine-4-carboxylic acid hydrochloride,, you can also browse my other articles. Thank you very much for taking the time to read this article.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism., 40117-63-340117-63-3, If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 40117-63-3, name is Quinuclidine-4-carboxylic acid hydrochloride. A new synthetic method of this compound is introduced below.

(Quinuclidin-4-yl)carboxylic acid was prepared from 4-cyanoquinuclidine (Oakwood Products) following the procedure of Grob and Renk, Helv. Chim. Acta, 37, 1681 (1954). To a stirred suspension of quinuclidine-4-carboxylic acid hydrochloride (100 mg, 0.523 mmol) in 3 mL of anhydrous tetrahydrofuran at 0 C. was added borane methylsulfide complex (42 mg, 0.553 mmol). The mixture was stirred at room temperature for 1 hr and heated to reflux overnight. The reaction was cooled to 0 C. and carefully treated with 1 mL of methanol. The solvent was then removed under reduced pressure to leave the desired alcohol. Yield 36 mg. MS (m/e): 141.

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Quinuclidine-4-carboxylic acid hydrochloride,, you can also browse my other articles. Thank you very much for taking the time to read this article.

Reference£º
Patent; CoMentis, Inc.; BILCER, Geoffrey M.; NG, Raymond; (104 pag.)US2016/9706; (2016); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Little discovery in the laboratory: a new route for 22766-68-3

Thank you very much for taking the time to read this article. If you are also interested in other aspects of Ethyl quinuclidine-4-carboxylate, , you can also browse my other articles.

One of the major reasons is to use measurements of the macroscopic properties of a system, the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level. 22766-68-3, introduce a new downstream synthesis route., 22766-68-322766-68-3

To a solution of ethyl 1-aza-bicyclo[2.2.2]octane-4-carboxylate (PCT2005104745) (9.610 g, 52.44 mmol) in THF (480 ml) at -780C was added borane-THF complex (73.41 ml,73.41 mmol) and the resulting solution was stirred at this temperature for 3.5 h. The reaction was quenched with slow addition of H2O (50 ml), warmed to RT, and allowed to stir for 45 min. The solution was diluted with EtOAc (100 ml), washed with brine (15 ml), extracted with EtOAc (3 x 50 ml), dried (Na2SO4) and evaporated. The crude product was purified on a CombiFlash companion using 0-50% EtOAc in cyclohexane as eluent to give a bright yellow solid.Yield: 7.236 g (70%)1 H NMR (400 MHz, CDCI3) delta = 4.15 (q, 2H), 3.07 (t, 4H)1 1.96 (t, 4H), 1.26 (t, 3H) ppm.

Thank you very much for taking the time to read this article. If you are also interested in other aspects of Ethyl quinuclidine-4-carboxylate, , you can also browse my other articles.

Reference£º
Patent; ARGENTA DISCOVERY LIMITED; WO2009/60206; (2009); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Derivation of elementary reaction about 22766-68-3

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Ethyl quinuclidine-4-carboxylate,, you can also browse my other articles. Thank you very much for taking the time to read this article.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism., 22766-68-322766-68-3, If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 22766-68-3, name is Ethyl quinuclidine-4-carboxylate. A new synthetic method of this compound is introduced below.

In a 500 mL three-necked flask, phenyllithium (160 mL, lM in THF) was treated with nitrogen Was slowly added dropwise to a solution of compound 1-4 (6.8 g, 0.04momicron1) in tetrahydrofuran (120 mL) Control the temperature at -50 C and stir at room temperature overnight. Water (200 mL) was added to quench the reaction, Extracted with ethyl acetate (500 mL), the organic layer was washed with saturated brine, dried over sodium sulfate, The solvent was evaporated under reduced pressure to give 6.8 g of a brown viscous solid, Ethyl acetate: petroleum ether = 1: 2 (200 mL) was added and stirred at room temperature for 2 h, filtered, The filter cake was washed with petroleum ether and dried to give a 5.1g lime light gray solid.

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Ethyl quinuclidine-4-carboxylate,, you can also browse my other articles. Thank you very much for taking the time to read this article.

Reference£º
Patent; Yifang Bio-technology (Shanghai) Co., Ltd.; Dai Xing; Jiang Yueheng; Wang Yaolin; (26 pag.)CN107200734; (2017); A;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

The influence of catalyst in 40117-63-3 reaction

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Quinuclidine-4-carboxylic acid hydrochloride, , We look forward to the emergence of more reaction modes in the future.

A balanced equation for a chemical reaction indicates what is reacting and what is produced, but it reveals nothing about how the reaction actually takes place., 40117-63-3. The reaction mechanism is the process, or pathway, by which a reaction occurs.40117-63-3. An updated downstream synthesis route of 40117-63-3 as follows.

Preparation of 3-fluorobenzyl quinuclidine-4-carboxylate (compound 91)A mixture of quinuclidine-4-carboxylic acid hydrochloride (100 mg, 0.52 mmol) and thionyl chloride (500 mu, 6.85 mmol) was refluxed for 2 hours. The reaction was cooled at room temperature and the solvent was accurately removed. The residue was suspended in dry DCM and treated with (3-fluorophenyl)methanol (65.8 mg, 0.52 mmol). The reaction was stirred at room temperature for 24 hours. The solvent was evaporated, the residue was dissolved in water (1 ml), basified with NaHCO3 and extracted twice with EtOAc. The combined organic layers were dried over Na2SO4, filtered and evaporated to obtain 3-fluorobenzyl quinuclidine-4-carboxylate (41 mg, 29.8 % yield), which was used in the next step without any further purification.

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Quinuclidine-4-carboxylic acid hydrochloride, , We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; CHIESI FARMACEUTICI S.p.A.; AMARI, Gabriele; RICCABONI, Mauro; DE ZANI, Daniele; WO2012/146515; (2012); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Flexible application of Ethyl quinuclidine-4-carboxylate in synthetic route

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

22766-68-3, One of the major reasons is to use measurements of the macroscopic properties of a system, the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level. 22766-68-3, introduce a new downstream synthesis route.

1 Azabicyclo 2.2.2Joct-4 yl(diphe yl)methanol ;A solution of phenyllithium (1.5-1.7 M in 70 cyclohexane / 30 ether, 20.0 mL, 32 mmol) was chilled down to -30 C under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4- carboxylate (1.51g, 8.23 mmol) in THF (20 mL) was slowly added to the reaction mixture at -30 C over 25 min. The reaction was allowed to warm up to room temperature overnight. The reaction was quenched with H20 and then evaporated to dryness under vacuum. H20 and EtOAc were added, causing a white solid to crash out. This solid was filtered off, to give the title compound (0.79 g). The aqueous phase was further extracted with EtOAc, the combined organic layers were dried over MgS04, filtered, and concentrated under vacuum. The crude product was treated with EtOAc and hexane and filtered to yield more of the title compound (0.67 g). Total yield (1.46 g, 60.7%). EI-MS m/z 294 (M+H+) Rt (1.37 min).

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; GLAXO GROUP LIMITED; WO2005/112644; (2005); A2;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Flexible application of Ethyl quinuclidine-4-carboxylate in synthetic route

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

22766-68-3, One of the major reasons is to use measurements of the macroscopic properties of a system, the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level. 22766-68-3, introduce a new downstream synthesis route.

1-azabicyclo[2.2.2]oct-4-yl{bis[3-(methyloxy)phenyl]}methanol A solution of 3-(methyloxy)phenylmagnesiumbromide (1.0 M in THF, 3.3 mL, 3.3 mmol) was chilled down to 0 C. under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.1608 g, 0.877 mmol) in THF (4 mL) was slowly added to the reaction mixture at 0 C. over 20 min. The reaction was allowed to warm up to room temperature and then heated at 60 C. for 16 h. The reaction was chilled in an ice bath, quenched with saturated NH4Cl, and concentrated under vacuum. The resulting residue was treated with H2O and extracted with EtOAc. The combined organic layers were dried with MgSO4, filtered, and concentrated under vacuum to yield the desired product (0.2881 g, 92.9%). EI-MS m/z 354(M+H+) Rt (1.46 min).

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Fun Route: New Discovery of Ethyl quinuclidine-4-carboxylate

Thank you very much for taking the time to read this article. If you are also interested in other aspects of Ethyl quinuclidine-4-carboxylate, , you can also browse my other articles.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism., 22766-68-322766-68-3, If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 22766-68-3, name is Ethyl quinuclidine-4-carboxylate. A new synthetic method of this compound is introduced below.

Example 32 Preparation of 1-butyl-4-[hydroxy(di-3-thienyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide A solution of n-Butyl lithium (2.5M in hexanes, 5.0 mL, 12.5 mmol) was chilled to -78 C. under Ar. 3-Bromothiophene (1.15 mL, 12.3 mmol) dissolved in ethyl ether (4.0 mL) was slowly added to the reaction mixture. The reaction was stirred for 30 min and then ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.7640 g, 4.16 mmol) in THF/Et2O (4 mL/4 mL) was added. The reaction was allowed to warm up from -78 C. to room temperature over 16 h then slowly quenched with water. The reaction was concentrated and the resulting brown solid was taken up in water and DCM. The organic phase was separated, dried over MgSO4, filtered and concentrated under vacuum to give a brown solid. The solid was dissolved in DMSO and purified by preparatory HPLC to give the title compound (0.1736 g, 9.4%). EI-MS m/z 362(M+) Rt (1.73 min)., 22766-68-3

Thank you very much for taking the time to read this article. If you are also interested in other aspects of Ethyl quinuclidine-4-carboxylate, , you can also browse my other articles.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider