The effect of 22766-68-3 reaction temperature change on equilibrium

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

22766-68-3, One of the major reasons is to use measurements of the macroscopic properties of a system, the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level. 22766-68-3, introduce a new downstream synthesis route.

Example 13: Preparation of 4-[cyano(di-2-thienyl)methyl]-1-[3- (DhenVIoxVlDroDVIl-1-azoniabicvclo [2.2.210ctane bromide;. 1-Azabicyclof2. 2. 2 Joct-4-yl(di-2-thienyl)methanol; A solution of 2-thienyllithium (1.0 M in THF, 13.0 mL, 13 mmol) was chilled down to -30 C under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.77 g, 4.20 mmol) in THF (12 mL) was slowly added to the 2-thienyllithium at-30 C over 40 min. The reaction was allowed to warm up to room temperature for overnight. The reaction was quenched with H20 and then diluted with EtOAC, hexane and DCM causing a solid to crash out of solution. The solid was filtered off, resulting in the desired compound (0.9132 g, 71.3%). EI-MS m/z 306 (M+) Rt (1.33 min).

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; GLAXO GROUP LIMITED; WO2005/112644; (2005); A2;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

The influence of catalyst in Quinuclidine-4-carboxylic acid hydrochloride reaction

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Quinuclidine-4-carboxylic acid hydrochloride, , We look forward to the emergence of more reaction modes in the future.

40117-63-3, One of the major reasons is to use measurements of the macroscopic properties of a system, the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level. 40117-63-3, introduce a new downstream synthesis route.

Step 5: (S)-4-((1-(5-(2-methoxyquinolin-1-ium-3-yl)-JH-imidazol-2-yl)- 7-(methylamino)- 7-oxoheptyl)carbamoyl)quinuclidin-1-ium mono L-tartrate salt (A5) A solution of 4-carboxyquinuclidin-1-ium chlorhydrate (1.3 eq.) in DMF (0.2 M) was treated with TBTU (1.3 eq.) and NMM (2.6 eq.). The reaction mixture was stirred at room temperature for 10 minutes and then added to a solution of A4 in DMF (0.2 M). The reaction was stirred at RT for 2 h and subsequently was purified by RP-HPLC (Acetonitrile/H20 + 0.1 % TFA). Theproduct was obtained as TFA salt which was partitioned between DCM and sat. aq. NaHCO3. The organic phase was separated, dried over Na2504 and concentrated under reduced pressure. The resulting syrup was dissolved in acetonitrile/H20 (2:3) and treated with L-tartaric acid (1 eq.). The resulting solution was lyophilized to obtain the title compound. 1H-NMR (400 MHz, 300 K, DMSO-d6) oe 8.73 (br s, 1H), 7.94 (t, 2H, J 9.6 Hz), 7.76 (d, 1H, J 8.0 Hz), 7.67 (br s,1H), 7.60 (m, 2H), 7.42 (t, 1H, J8.0 Hz), 5.02 (m, 1H), 4.13 (s, 3H), 3.93 (s, 2H), 3.18 (t, 6H, J7.2 Hz), 2.54 (d, 3H, J4.4 Hz), 2.05-1.91 (m, 8H), 1.51-1.23 (m, 8H). MS (ESj C29H38N603:519 (M+H).

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Quinuclidine-4-carboxylic acid hydrochloride, , We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; IRBM SCIENCE PARK S.P.A.; C.N.C.C.S. SCARL COLLEZIONE NAZIONALE DEI COMPOSTI CHIMICI E CENTRO SCREENING; ALTAMURA, Sergio; BIANCOFIORE, Ilaria; BRESCIANI, Alberto; FERRIGNO, Federica; HARPER, Steven; LAUFER, Ralph; ONTORIA ONTORIA, Jesus Maria; MALANCONA, Savina; MONTEAGUDO, Edith; NIZI, Emanuela; ORSALE, Maria Vittoria; PONZI, Simona; PAONESSA, Giacomo; SUMMA, Vincenzo; VENEZIANO, Maria; WO2014/67985; (2014); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Fun Route: New Discovery of Ethyl quinuclidine-4-carboxylate

Thank you very much for taking the time to read this article. If you are also interested in other aspects of Ethyl quinuclidine-4-carboxylate, , you can also browse my other articles.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism., 22766-68-322766-68-3, If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 22766-68-3, name is Ethyl quinuclidine-4-carboxylate. A new synthetic method of this compound is introduced below.

Step 1. A solution of 4-carbethoxyquinuclidine (10.92 g) in THF (155 mL) was treated at-780C with borane-THF (1.0 M, 77.5 mL). The resulting mixture was stirred at -78C for 4 h, then treated with water (50 mL), warmed to room temperature and stirred for an additional hour. The reaction mixture was diluted with ethyl acetate and the aqueous phase was separated and extracted with two further portions of ethyl acetate. The combined organic layers were washed with brine- (twice), dried (MgSO4), filtered and evaporated in vacuo. Purification by silica gel chromatography (eluting with cyclohexane-ethyl acetate [1 :0 to 1 :1]) gave 1-boranyl-1-aza-bicyclo[2.2.2]octane-4- carboxylic acid ethyl ester (7.12 g, 61%) as an off-white solid. 1H NMR (400 MHz, CDCI3) delta 4.16 (2H1 q, J = 6.9), 3.10-3.05 (6H1 m), 1.98-1.93 (6H, m), 1.26 (3H, t, J = 6.9).

Thank you very much for taking the time to read this article. If you are also interested in other aspects of Ethyl quinuclidine-4-carboxylate, , you can also browse my other articles.

Reference£º
Patent; ARGENTA DISCOVERY LIMITED; WO2008/99186; (2008); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

The effect of the change of Ethyl quinuclidine-4-carboxylate synthetic route on the product

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

A balanced equation for a chemical reaction indicates what is reacting and what is produced, but it reveals nothing about how the reaction actually takes place., 22766-68-3. The reaction mechanism is the process, or pathway, by which a reaction occurs.22766-68-3. An updated downstream synthesis route of 22766-68-3 as follows.

1 Azabicyclo 2.2.2Joct-4 yl(diphe yl)methanol ;A solution of phenyllithium (1.5-1.7 M in 70 cyclohexane / 30 ether, 20.0 mL, 32 mmol) was chilled down to -30 C under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4- carboxylate (1.51g, 8.23 mmol) in THF (20 mL) was slowly added to the reaction mixture at -30 C over 25 min. The reaction was allowed to warm up to room temperature overnight. The reaction was quenched with H20 and then evaporated to dryness under vacuum. H20 and EtOAc were added, causing a white solid to crash out. This solid was filtered off, to give the title compound (0.79 g). The aqueous phase was further extracted with EtOAc, the combined organic layers were dried over MgS04, filtered, and concentrated under vacuum. The crude product was treated with EtOAc and hexane and filtered to yield more of the title compound (0.67 g). Total yield (1.46 g, 60.7%). EI-MS m/z 294 (M+H+) Rt (1.37 min).

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; GLAXO GROUP LIMITED; WO2005/112644; (2005); A2;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Little discovery in the laboratory: a new route for 40117-63-3

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Quinuclidine-4-carboxylic acid hydrochloride, , We look forward to the emergence of more reaction modes in the future.

A balanced equation for a chemical reaction indicates what is reacting and what is produced, but it reveals nothing about how the reaction actually takes place., 40117-63-3. The reaction mechanism is the process, or pathway, by which a reaction occurs.40117-63-3. An updated downstream synthesis route of 40117-63-3 as follows.

To a stirred suspension of quinuclidine-4-carboxylic acid hydrochloride (5.5 g) in 30 mL of dry THF at 0 C. was added borane dimethyl sulfide complex (6.7 g, 3 eq.). The reaction mixture was stirred at room temperature for 1 hr and heated to reflux for 16 hr. It was then quenched with drop-wise addition of methanol (7 mL) at 0 C. The solvent was then removed under reduced pressure, and the crude product obtained was purified by column chromatography (Silica gel, 20% EA:Hexane) to afford the product quinuclidin-4-ylmethanol N-borane complex as a white solid (1.35 g, 30%).

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Quinuclidine-4-carboxylic acid hydrochloride, , We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; CoMentis, Inc.; BILCER, Geoffrey M.; NG, Raymond; (104 pag.)US2016/9706; (2016); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

The effect of the change of 22766-68-3 synthetic route on the product

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

A balanced equation for a chemical reaction indicates what is reacting and what is produced, but it reveals nothing about how the reaction actually takes place., 22766-68-3. The reaction mechanism is the process, or pathway, by which a reaction occurs.22766-68-3. An updated downstream synthesis route of 22766-68-3 as follows.

Example 33 Preparation of 1-azabicyclo[2.2.2]oct-4-yl(di-3-thienyl)methanol A solution of t-Butyl lithium (1.7M in pentanes, 5.8 mL, 9.86 mmol) was chilled to -78 C. under Ar. 3-Bromothiophene (0.46 mL, 4.90 mmol) dissolved in THF (4.0 mL) was slowly added to the reaction mixture over 6 min. The reaction was stirred for 30 min and then ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.3132 g, 1.71 mmol) in THF (4 mL) was added. The reaction was allowed to warm up from -78 C. to room temperature over 16 h. After 14 hours, the reaction was slowly quenched with water. EtOAc was added, causing a grey solid to crash out. The solid was filtered off to give the title compound (0.3375 g, 64.6%). EI-MS m/z 306(M+H)+ Rt (1.27 min).

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Derivation of elementary reaction about 22766-68-3

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Ethyl quinuclidine-4-carboxylate,, you can also browse my other articles. Thank you very much for taking the time to read this article.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism., 22766-68-322766-68-3, If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 22766-68-3, name is Ethyl quinuclidine-4-carboxylate. A new synthetic method of this compound is introduced below.

Example 33 Preparation of 1-azabicyclo[2.2.2]oct-4-yl(di-3-thienyl)methanol A solution of t-Butyl lithium (1.7M in pentanes, 5.8 mL, 9.86 mmol) was chilled to -78 C. under Ar. 3-Bromothiophene (0.46 mL, 4.90 mmol) dissolved in THF (4.0 mL) was slowly added to the reaction mixture over 6 min. The reaction was stirred for 30 min and then ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.3132 g, 1.71 mmol) in THF (4 mL) was added. The reaction was allowed to warm up from -78 C. to room temperature over 16 h. After 14 hours, the reaction was slowly quenched with water. EtOAc was added, causing a grey solid to crash out. The solid was filtered off to give the title compound (0.3375 g, 64.6%). EI-MS m/z 306(M+H)+ Rt (1.27 min).

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Ethyl quinuclidine-4-carboxylate,, you can also browse my other articles. Thank you very much for taking the time to read this article.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Flexible application of Ethyl quinuclidine-4-carboxylate in synthetic route

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

22766-68-3, One of the major reasons is to use measurements of the macroscopic properties of a system, the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level. 22766-68-3, introduce a new downstream synthesis route.

1-azabicyclo[2.2.2]oct-4-yl[bis(4-methylphenyl)]methanol A solution of 4-methylphenylmagnesiumbromide (1.0 M in THF, 3.3 mL, 3.3 mmol) was chilled down to 0 C. under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.1509 g, 0.823 mmol) in THF (4 mL) was slowly added to the reaction mixture at 0 C. over 20 min. The reaction was allowed to warm up to room temperature and then heated at 60 C. for 16 h. The reaction was chilled in an ice bath, quenched with saturated NH4Cl, and concentrated under vacuum. The resulting residue was treated with H2O and extracted with EtOAc. The combined organic layers were dried with MgSO4, filtered, and concentrated under vacuum to yield the desired product (0.2291 g, 86.6%). EI-MS m/z 322(M+H+) Rt (1.57 min).

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Ethyl quinuclidine-4-carboxylate, , We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Little discovery in the laboratory: a new route for Quinuclidine-4-carbonitrile

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Quinuclidine-4-carbonitrile, , We look forward to the emergence of more reaction modes in the future.

One of the major reasons is to use measurements of the macroscopic properties of a system, the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level. 26458-78-6, introduce a new downstream synthesis route., 26458-78-626458-78-6

Quinuclidine-4-carbonitrile (4 g, 29.4 mmol) was treated with 30 mL of 6 N aqueous HCl solution and stirred under reflux for 16 hr. The reaction mixture was cooled and evaporated to dryness under reduced pressure. The solid obtained was triturated with 20% ether-hexane to afford the HCl salt of quinuclidine-4-carboxylic acid (5.5 g, quantitative).

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of Quinuclidine-4-carbonitrile, , We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; CoMentis, Inc.; BILCER, Geoffrey M.; NG, Raymond; (104 pag.)US2016/9706; (2016); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider

Derivation of elementary reaction about 22766-68-3

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Ethyl quinuclidine-4-carboxylate,, you can also browse my other articles. Thank you very much for taking the time to read this article.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism., 22766-68-322766-68-3, If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular. 22766-68-3, name is Ethyl quinuclidine-4-carboxylate. A new synthetic method of this compound is introduced below.

Example 27 Preparation of 1-azabicyclo[2.2.2]oct-4-yl(di-2-thienyl)methanol A solution of 2-thienyllithium (1.0M in THF, 9.10 mL, 9.10 mmol) was chilled down to -30 C. under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate (0.4196 g, 2.289 mmol) in THF (8 mL) was slowly added to the reaction mixture over 20 min. The reaction was allowed to warm up to room temperature over 16 h. The reaction was quenched with water and then evaporated to dryness. H2O and DCM were added, causing a light brown solid to crash out. This solid was filtered off to give the title compound (0.4161 g, 59.5%). EI-MS m/z 306(M+H+) Rt (1.35 min).

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of Ethyl quinuclidine-4-carboxylate,, you can also browse my other articles. Thank you very much for taking the time to read this article.

Reference£º
Patent; Laine, Damane I.; Palovich, Michael R.; McCleland, Brent W.; Neipp, Christopher E.; Thomas, Sonia M.; US2007/185155; (2007); A1;,
Quinuclidine – Wikipedia
Quinuclidine | C7H13N | ChemSpider