Analyzing the synthesis route of 36620-11-8

Although many compounds look similar to this compound(36620-11-8)Safety of Bis(norbornadiene)rhodium (I) tetrafluoroborate, numerous studies have shown that this compound(SMILES:[F-][B+3]([F-])([F-])[F-].C12=C3[Rh+]14567(C8=C5C9C6=C7C8C9)C%10=C4C2CC3%10), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Catalytic asymmetric hydrogenation of (Z)-α-dehydroamido boronate esters: direct route to alkyl-substituted α-amidoboronic esters, published in 2020, which mentions a compound: 36620-11-8, mainly applied to catalytic asym hydrogenation alpha dehydroamido boronate ester; alkyl amidoboronic ester preparation reaction; crystal mol structure cyclohexyl tetramethyldioxaborolanylethyl oxazolidinone, Safety of Bis(norbornadiene)rhodium (I) tetrafluoroborate.

The direct catalytic asym. hydrogenation of (Z)-α-dehydroamino boronate esters was realized. Using this approach, a class of therapeutically relevant alkyl-substituted α-amidoboronic esters was easily synthesized in high yields with generally excellent enantioselectivities (up to 99% yield and 99% ee). The utility of the products has been demonstrated by transformation to their corresponding boronic acid derivatives by a Pd-catalyzed borylation reaction and an efficient synthesis of a potential intermediate of bortezomib. The clean, atom-economic and environment friendly nature of this catalytic asym. hydrogenation process would make this approach a new alternative for the production of alkyl-substituted α-amidoboronic esters of great potential in the area of organic synthesis and medicinal chem.

Although many compounds look similar to this compound(36620-11-8)Safety of Bis(norbornadiene)rhodium (I) tetrafluoroborate, numerous studies have shown that this compound(SMILES:[F-][B+3]([F-])([F-])[F-].C12=C3[Rh+]14567(C8=C5C9C6=C7C8C9)C%10=C4C2CC3%10), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Quinuclidine – Wikipedia,
Quinuclidine | C7H13N | ChemSpider