Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Article, Research Support, U.S. Gov’t, Non-P.H.S., Research Support, Non-U.S. Gov’t, Organic Letters called Asymmetric total synthesis of C9′-epi-sinefungin, Author is Decultot, Ludovic; Policarpo, Rocco L.; Wright, Brandon A.; Huang, Danny; Shair, Matthew D., which mentions a compound: 36620-11-8, SMILESS is [F-][B+3]([F-])([F-])[F-].C12=C3[Rh+]14567(C8=C5C9C6=C7C8C9)C%10=C4C2CC3%10, Molecular C14H8BF4Rh, Quality Control of Bis(norbornadiene)rhodium (I) tetrafluoroborate.
The natural nucleoside (+)-sinefungin, structurally similar to cofactor S-adenosyl-L-methionine (SAM), inhibits various SAM-dependent methyltransferases (MTs). Access to sinefungin analogs could serve as the basis for the rational design of small-mol. methyltransferase inhibitors. We developed a route to the unnatural C9′ epimer of sinefungin that employed a diastereoselective Overman rearrangement to install the key C6′ amino stereo-center. The ability for late stage modification is highlighted, opening an avenue for the discovery of new MTs inhibitors.
The article 《Asymmetric total synthesis of C9′-epi-sinefungin》 also mentions many details about this compound(36620-11-8)Quality Control of Bis(norbornadiene)rhodium (I) tetrafluoroborate, you can pay attention to it, because details determine success or failure
Reference:
Quinuclidine – Wikipedia,
Quinuclidine | C7H13N | ChemSpider