Hubbard, Robert L.’s team published research in Journal of Applied Polymer Science in 138 | CAS: 1761-71-3

Journal of Applied Polymer Science published new progress about 1761-71-3. 1761-71-3 belongs to quinuclidine, auxiliary class Ploymers, name is 4,4-Diaminodicyclohexyl methane, and the molecular formula is C13H26N2, Product Details of C13H26N2.

Hubbard, Robert L. published the artcileAn empirically derived model for further increasing microwave curing rates of epoxy-amine polymerizations, Product Details of C13H26N2, the publication is Journal of Applied Polymer Science (2021), 138(1), 49635, database is CAplus.

The reaction rates of common epoxy resins with diamine crosslinking agents in uniform microwave fields have been compared according to a variety of structural features. A statistically designed exptl. matrix was used to determine that the curing rates were linearly dependent on only two significant variables, amine basicity, and degrees of rotational freedom (entropy) of the reactants. Surprisingly, the mol. polarizability, which is commonly understood to be responsible for the transfer of microwave electromagnetic energy to mols. with permanent dipoles, had no significant effect even as a dependent variable. A very high probability model was produced that accurately predicts the reactivities of epoxide and diamine reactants with respect to specific structural features. Further evidence is provided for a dominant linear pregelation polymerization and a uniform microwave reaction field.

Journal of Applied Polymer Science published new progress about 1761-71-3. 1761-71-3 belongs to quinuclidine, auxiliary class Ploymers, name is 4,4-Diaminodicyclohexyl methane, and the molecular formula is C13H26N2, Product Details of C13H26N2.

Referemce:
https://en.wikipedia.org/wiki/Quinuclidine,
Quinuclidine | C7H13N | ChemSpider