Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Article, Research Support, Non-U.S. Gov’t, Review, Angewandte Chemie, International Edition called Stereoelectronic Effects in Ligand Design: Enantioselective Rhodium-Catalyzed Hydrogenation of Aliphatic Cyclic Tetrasubstituted Enamides and Concise Synthesis of (R)-Tofacitinib, Author is Li, Chengxi; Wan, Feng; Chen, Yuan; Peng, Henian; Tang, Wenjun; Yu, Shu; McWilliams, J. Christopher; Mustakis, Jason; Samp, Lacey; Maguire, Robert J., which mentions a compound: 36620-11-8, SMILESS is [F-][B+3]([F-])([F-])[F-].C12=C3[Rh+]14567(C8=C5C9C6=C7C8C9)C%10=C4C2CC3%10, Molecular C14H8BF4Rh, Category: quinuclidine.
We herein report the development of a conformationally defined, electron-rich, C2-sym., P-chiral bisphosphorus ligand, ArcPhos, by taking advantage of stereoelectronic effects in ligand design. With the Rh-ArcPhos catalyst, excellent enantioselectivities and unprecedentedly high turnovers (TON up to 10,000) were achieved in the asym. hydrogenation of aliphatic carbocyclic and heterocyclic tetrasubstituted enamides, to generate a series of chiral cis-2-alkyl-substituted carbocyclic and heterocyclic amine derivatives in excellent enantiomeric ratios. This method also enabled an efficient and practical synthesis of the Janus kinase inhibitor (R)-tofacitinib.
There is still a lot of research devoted to this compound(SMILES:[F-][B+3]([F-])([F-])[F-].C12=C3[Rh+]14567(C8=C5C9C6=C7C8C9)C%10=C4C2CC3%10)Category: quinuclidine, and with the development of science, more effects of this compound(36620-11-8) can be discovered.
Reference:
Quinuclidine – Wikipedia,
Quinuclidine | C7H13N | ChemSpider