Analyzing the synthesis route of 36620-11-8

Although many compounds look similar to this compound(36620-11-8)Synthetic Route of C14H8BF4Rh, numerous studies have shown that this compound(SMILES:[F-][B+3]([F-])([F-])[F-].C12=C3[Rh+]14567(C8=C5C9C6=C7C8C9)C%10=C4C2CC3%10), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 36620-11-8, is researched, SMILESS is [F-][B+3]([F-])([F-])[F-].C12=C3[Rh+]14567(C8=C5C9C6=C7C8C9)C%10=C4C2CC3%10, Molecular C14H8BF4RhJournal, Article, Chemical Science called Catalytic asymmetric hydrogenation of (Z)-α-dehydroamido boronate esters: direct route to alkyl-substituted α-amidoboronic esters, Author is Lou, Yazhou; Wang, Jun; Gong, Gelin; Guan, Fanfu; Lu, Jiaxiang; Wen, Jialin; Zhang, Xumu, the main research direction is catalytic asym hydrogenation alpha dehydroamido boronate ester; alkyl amidoboronic ester preparation reaction; crystal mol structure cyclohexyl tetramethyldioxaborolanylethyl oxazolidinone.Synthetic Route of C14H8BF4Rh.

The direct catalytic asym. hydrogenation of (Z)-α-dehydroamino boronate esters was realized. Using this approach, a class of therapeutically relevant alkyl-substituted α-amidoboronic esters was easily synthesized in high yields with generally excellent enantioselectivities (up to 99% yield and 99% ee). The utility of the products has been demonstrated by transformation to their corresponding boronic acid derivatives by a Pd-catalyzed borylation reaction and an efficient synthesis of a potential intermediate of bortezomib. The clean, atom-economic and environment friendly nature of this catalytic asym. hydrogenation process would make this approach a new alternative for the production of alkyl-substituted α-amidoboronic esters of great potential in the area of organic synthesis and medicinal chem.

Although many compounds look similar to this compound(36620-11-8)Synthetic Route of C14H8BF4Rh, numerous studies have shown that this compound(SMILES:[F-][B+3]([F-])([F-])[F-].C12=C3[Rh+]14567(C8=C5C9C6=C7C8C9)C%10=C4C2CC3%10), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Quinuclidine – Wikipedia,
Quinuclidine | C7H13N | ChemSpider